
COGS2020
TUTORIAL 6: CLT AND STATISTICAL TESTING BASICS



Quick recap

• Last week, we learned about probability basics, random variables, 
their probability distributions, and different functions (e.g. PDF, 
CDF, etc.) we can use to describe them

• We also learned that probability distributions are defined/created 
by identifying key moments (e.g. expected value, variance)

• Sample statistics and graphs are all estimates of the true 
population



Central Limit Theorem

• Definition: As n increases (rule of thumb, at least n = 30), the 
distribution of sample means (or any other linear 
transformation) will approximate a normal distribution
regardless of the original population distribution the samples were 
drawn from
• Assuming that the sample means are averages of independent and 

identically distributed (i.i.d) random variables

• Why does the CLT matter? 
• This theorem underlies all null hypothesis testing – will come back to this 

in a few slides, but first, let’s look at an example and break down Matt’s 
math in his lecture slides 



Matt’s example
Key things to notice:

1. PDF shows the probability 
density of original population 
distribution – high probability at 
lower numbers

2. Shows a histogram of an actual 
sample – shape follows the 
original distribution as expected

3. Sampling distribution – if we 
were to take multiple samples, 
then get the mean of each 
sample, and make a 
distribution.. Distribution of 
sample means, is a normal 
distribution

This shows us exactly what the CLT 
states – the distribution of sample 
means will appropriate a normal 
distribution regardless of the 
original population distribution



Matt’s maths
• In short – we are illustrating the CLT in mathy terms. We are going 

to look at how we can transform random variables, and how that 
effects key moments such expected value and variance.

• Let’s look at the CLT applied to different transformations – in 
means, sums, etc.



Distribution of Sample Means

• The key moments of Y can be expressed in terms of X – remember Y is defined 
by X (+ some transformation)

The RV that 
generates 
means of X

i.i.d RVs – the RVs that generate 
data from our population

This equation just shows us how 
X is transformed into Y – it 
shows us how doing things to 
our random variables X can 
produce another random 
variable we arbitrarily call Y



Distribution of Sample Sums

• The key moments of Y can be expressed in terms of X – remember Y is defined 
by X (+ some transformation)

The RV that 
generates 
sums of X

i.i.d RVs – the RVs that generate 
data from our population

This equation just shows us how 
X is transformed into Y – it 
shows us how doing things to 
our random variables X can 
produce another random 
variable we arbitrarily call Y



General Rule

• These equations are like a general rule used to describe linear 
transformations of a random variable X (into Y), and how that effects 
key moments like expected value and variance (of Y)

• This rule underlies the E[X] and Var[X] equations we saw for the sample 
sums and average random variables

• But don’t worry – I will not go into the math about how exactly we are 
able to get there from these rules ☺



Interim summary + why does this all matter?
• We have essentially shown that when we create a distribution of 

sample means (Y), we can define its key moments/descriptives using 
the original data from the population (X)

• In summary, the CLT gives us 3 main implications:
1. Sampling distribution of sample means will ALWAYS be normal (as long as 

n > 30) regardless of the original distributions
2. The mean of our sampling distribution will be equal to the true population 

mean
3. The variance of our sampling distribution will always be LESS than our true 

population distribution
• Importance of the CLT: we LOVE normal (ish) distributions in research, 

we know a lot about them, meaning that we can use the normal (ish) 
distribution to model things (e.g. the null hypothesis)

Note: Y can also be 

notated as x̄  (big X 
bar)



Using sampling distributions to represent our 
population parameters
• This is exactly what we have been doing so far – we will just be 

changing the notation a little bit

X the RV that represents our 
population – this gives us our raw 
data

Y is the same thing 
as x̄ , the RV that 
generates sample 
means

Population 
parameters

Sampling 
distribution 
parameters

Moments of our sampling distribution (x̄) 
can be used to describe/estimate 
moments of the original population 
distribution (X)



Experimentation and estimating population 
parameters
• When we run experiments, we are trying to get a mini snapshot of 

the wider phenomenon/population – we collect a sample
• The statistics/graphs we get from these experiments (e.g. sample 

mean, sample variance, histogram plots, etc.) are all estimates of 
the wider true population, so:

Sample 
statistics

The population 
statistics we are 
estimating



Interim summary 2 + next step

• We have set up the stage for null hypothesis testing:
• We know that sample statistics are all estimates of the true population
• We have a way to model our population using a sampling distribution (and 

we know this is viable because of the CLT)

• “Modelling” the population is the basis of null hypothesis testing.. 
let’s shift gears into what null hypothesis testing is first



Null hypothesis testing
• It is a statistical method used to test an assumption about a 

population parameter (we assume the null)
• In null hypothesis testing, we are trying to see if there is evidence 

that suggests there is an effect or not
• Example 1: We want to see if the average height of MQ students is 

significantly greater than 160cm?
• Example 2: Is the firing rate of a neuron is significantly greater than 

baseline?
• How do we do this? 

• By creating a hypothetical null model, then comparing our observed 
statistics (e.g. sample mean) to the null..



How do we create a hypothetical null model?
1. Define the null and alterative (what is considered no effect in the population?). (H0 and 

H1 in terms of the population parameter θ) 
2. What does the null look like in the population (what would the population look like if 

null is true – define the key moments)
 X ~ N(parameters if null was true)
3. How are we estimating the population mean (θ-hat)? (eg. sample mean)
4. What is the sampling distribution of this estimate (given null is true)? Building the 

sampling distribution null model..
 x̄  ~ distribution(sampling dist parameters is null was true)
5. Do we have enough information about the population to create this null model 

distribution? If not, what alternative distribution could we use?
6. What is the sample/test statistic (θ-hatobs) based on the distribution you use to model 

the null?
7. Where does sample/test statistic lie when put into your null model? Is it likely to occur 

or unlikely?
• If likely – do not reject null
• If unlikely – reject null



Likely vs unlikely to occur – what does this 
mean?
• The distribution you used to model your null hypothesis is a probability 

distribution.
• E.g. in a normal test, you use the normal distribution to model what the null 

would look like in a distribution of sample means
• We know a lot about normal distributions

By convention, we consider the extreme 5% to be 
unlikely. That is why we set our alpha to be 5% or 0.05.

This is our “rejection” zone. If our observed sample 
mean falls within this area, we consider it unlikely that 
we got this value in our null model. Therefore, we reject 
the null model. We assume that it is more likely for 
another model to have produced our sample mean.



Some Types of Probability Distributions
• Probability distributions are defined by specific parameters that 

dictate the distribution’s shape/form

Random variables and their 
defining probability distributions 
are usually notated like this:

X ~ Binomial(n,p)
X ~ N(μX, σX

2) 
X ~ t(df)
X ~ F(d1, d2)

Note: x axis is sample space
             y axis is probability

SLIDE FROM WEEK 5

We set up our rejection zones in these 
distributions too – this unit only covers some of 

these





Alpha, p values, critical values, confidence 
intervals – different sides of the same coin
• P value = area under the curve corresponding to the probability of 

getting your sample/test statistic or more extreme
• Alpha = area under the curve representing your rejection zone 

(usually extreme 5%), values considered unlikely
• Critical value(s) = the cut-off value (on your null model) that 

marks where your rejection zone starts
• Confidence interval = the inverse of alpha, the range of values 

that are considered likely in your null model
• These are sample specific values – no longer probability-based, moves 

back into the sample data realm



So…… what now?
• We have zoomed through all the basics – these slides are a (very 

short) summary and alternative explanation of Matt’s lectures
• Any questions/clarifications so far?
• If you have specific questions about lecture content (e.g. one-tail 

vs two-tail, etc.) please ask away and/or come up to me to have a 
chat

• I am also happy to go through more examples – will have to be my 
whiteboard drawings

• Otherwise – use this time to do Problem Set 2 or get started on the 
final project
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