COGS2020

TUTORIAL 5: PROBABILITY AND RANDOM VARIABLES

Probability Key Terms

- Sample space set of all possible outcomes
- Outcome single result of an experiment
- Event a set of outcomes (results) from an experiment
- Probability of an event likelihood of an event,

0 = no likelihood, 1 = 100% likelihood

Probability Basics

Assumptions/Axioms:

- 1. Non-negativity: $P(A) \ge 0$
- 2. Normalisation: P(S) = 1
- 3. Additivity: $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive

Therefore:

 $P(\emptyset)=0$, probability of getting nothing, or an outcome outside of S, is 0

P(not A) = 1 - P(A), probability of getting anything but A, is 1 - A

P(A and B) = P(A)*P(B)

P(A or B) = P(A) + P(B) - P(A and B), accounts for the overlap of outcomes between A and B (if any)

Axiom 1: Non-Negativity

The probability of any event A is always **non-negative**:

•
$$P(A) \ge 0$$

This means probabilities cannot be negative and every event has a probability that is at least zero.

Axiom 2: Normalization

The probability of the **entire sample space** (S) is always **1**:

•
$$P(S) = 1$$

This ensures that **something must happen** — the total probability of all possible outcomes is 1.

Axiom 3: Additivity

If two events A and B are **mutually exclusive** (i.e., they cannot occur together):

$$\bullet \ P(A \cup B) = P(A) + P(B)$$

This states that the probability of **either** A **or** B happening is simply the sum of their individual probabilities.

U = union, or

Probability of the Empty Set

The empty set Ø contains no outcomes, so:

•
$$P(\emptyset) = 0$$

Example: The probability of flipping a coin getting neither "Heads" nor "Tails" is 0.

Complement Rule

• The probability of **not** A (denoted A^c) is:

•
$$P(A^c) = 1 - P(A)$$

• The chance that something **does** *not* happen is equal to 1 minus the chance that it *does* happen.

Let's say you flip a coin.

- The chance of getting Heads = P(Heads) = 0.5
- So the chance of not getting Heads (i.e., getting Tails) =

$$P(Not Heads) = 1 - 0.5 = 0.5$$

Complement Rule

In Plain English:

- **P(A)** = The probability of event A happening.
- **P(A^c)** = The probability of event A **not** happening.
- Since something either happens or it doesn't, the two probabilities must add up to 1.

There's a 30% chance it will rain today.

- So the chance it won't rain is:
- 1 0.3 = 0.7 (or 70%)

Inclusion-Exclusion (Overlapping Events)

• If A and B are **not** mutually exclusive:

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

P(AUB) = Probability that A or B happens (or both).

P(A) = Probability that A happens.

P(B) = Probability that B happens.

P(AnB) = Probability that both A and B happen at the same time.

Why Subtract P(A∩B)?

• When we add P(A) + P(B), we double-count the part where A and B both happen.

So, we subtract P(AnB) to fix that.

Inclusion-Exclusion (Overlapping Events)

P(A or B) = P(A) + P(B) - P(A and B)

Example (Real-Life Style):

Imagine we ask a group of people:

- 40% like pizza \rightarrow P(A) = 0.3 + 0.1 = 0.4
- 30% like burgers \rightarrow P(B) = 0.2 + 0.1 = 0.3
- 10% like both \rightarrow P(AnB) = 0.1

Sample Space	Likes pizza (A)	Likes burgers (B)	Probability
Likes pizza only	Yes	X No	0.3
Like burgers only	X No	✓ Yes	0.2
Likes both	✓ Yes	✓ Yes	0.1
Likes none	X No	X No	0.4

So, what's the chance someone likes pizza OR burgers (or both)?

- P(AUB) = 0.4 + 0.3 0.1 = 0.6
- So, there's a 60% chance a random person likes either pizza, burgers, or both.

Probability of Independent Events

• If two events A and B are independent (one does not affect the other):

•
$$P(A \cap B) = P(A) \times P(B)$$

 $P(A \cap B) = The chance that both A and B happen.$

P(A) = The chance that A happens.

P(B) = The chance that B happens.

• Independent events = Knowing whether A happens tells you nothing about whether B happens (and vice versa).

n = intersection, and

Probability of Independent Events

Imagine:

- You flip a coin: the chance of Heads is 0.5
- You **roll a die**: the chance of rolling a **4** is 1/6

These are **independent** — the coin flip doesn't affect the die roll.

So what's the chance of getting **Heads AND a 4**?

- P(Heads and 4)= P(Heads) \times P(4) = 0.5 \times 1/6 = 1/12
- So there's a 1 in 12 chance both happen at the same time.

Random Variables (and how they're related to probability)

- A random variable is a "process" that generates random outcomes
- Process is tied to a population and defined by a probability distribution
 - Outcomes are defined by a sample space (all potential outcomes) and the probability of getting each outcome (visualised in a probability distribution)
- Therefore, random variables and their "behaviour" can be characterised by a probability distribution

Probability Distribution Functions

- Probability distribution *functions* describe the probability of obtaining different values (of the sample space) from a random variable
- In other words, they are graphs that describe the behaviour of probability distributions
- Note: You can get all the same info from the original probability distribution graph, but it is easier to understand if we capture it in a different way
- All the functions on the next few slides can be made for each type of probability distribution

Types of Distribution Functions

Probability Mass Function (PMF)

Probability Mass

 Function – for
 discrete random
 variables, function
 that tells us the
 probability/likelihood
 of each (countable)
 outcome

Calculating probability in PMF Probability Mass Function (PMF)

Can count and add the probability of each singular outcome

Example:

What is the probability of rolling a number greater than 2. Or in different terms, P(X>2)?

Calculating probability in PMF Probability Mass Function (PMF)

Can count and add the probability of each singular outcome

Example:

What is the probability of rolling a number greater than 2. Or in different terms, P(X>2)?

$$P(X > 2) = rac{1}{6} + rac{1}{6} + rac{1}{6} + rac{1}{6}$$
 $= rac{4}{6} = rac{2}{3}$

Probability Mass Function

For a discrete random variable, the probability mass function (PMF) gives the probability of each outcome.

P(X=x) = "What's the probability that the random variable X equals some value x?"

A PMF tells you how likely each outcome is.

This one says that if you flip this particular **biased coin**, there's a **30% chance of heads** and a **70% chance of tails**.

$$P(X=x) = egin{cases} 0.3 & ext{if } x = ext{heads} \ 0.7 & ext{if } x = ext{tails} \end{cases}$$

Types of Distribution Functions Probability Density Function (PDF)

Probability Density
 Function – for
 continuous random
 variables, function
 that gives
 probability density
 of each
 (uncountable)
 outcome

Sample space – all possible outcomes Outcome sometimes notated as x (little x)

Calculating probability in PDF Probability Density Function (PDF)

- Can NOT count and add the probability of each singular outcome
 - need to calculate area under the curve

Example:

What is the probability that someone's height (from this population) will be greater than 175cm, or in different terms P(X > 175)?

Calculating probability in PDF Probability Density Function (PDF)

Can NOT count and add the probability of each singular outcome
 need to calculate area under the curve

Example:

What is the probability that someone's height (from this population) will be greater than 175cm, or in different terms P(X > 175)?

Unable to calculate by hand (without fancy maths), but can calculate using R!

Types of Distribution Functions Cumulative Distribution Function (CDF)

- Represents area under the curve in a function form

Types of Distribution Functions Quantile Function (QF)

Quantile Function –
 gives the value that
 corresponds to a
 specified
 probability/percentile

Inverse of a CDF –
gives X value instead
of probability

R functions used for probability calculations

Calculating probability of specific values:

- dbinom(x, n, p), PMF of binomial distribution
- dnorm(x, mean, sd, lower.tail = T/F), PDF of normal distribution *

Calculating probability of a range of values:

- pbinom(x, n, p, lower.tail = T/F), CDF of binomial dist, $P(X \le x) \mid P(X > x)$
- pnorm(x, mean, sd, lower.tail = T/F), CDF of normal distribution

Calculating specific values that correspond to a probability/percentile:

- qbinom(q, n, p, lower.tail = T/F)
- qnorm(q, mean, sd, lower.tail = T/F)

^{*} Note that because we cannot count each and every single outcome of a norm dist, trying to isolate a particular point on a PDF is not recommended. The probability of getting any single particular outcome in a continuous random variable is so small, that it is practically 0. P(X=x)=0

Why do probability distributions matter in statistics/research?

- Probability distributions are used to model the population in some way, and tells us how data is expected to behave
- Moments are "descriptives" or characteristics of a probability distribution – these moments are key characteristics that define/determine the form of the distribution
- Moments (e.g. expected value, variance, etc.) can be used to estimate outcomes, and run statistical/hypothesis tests...

Types of Moments/Descriptives

Note: these are the moments of a random variable that form a normal distribution.

$$X \sim N(\mu_X, \sigma_X^2)$$

• Expected Value, E(X) or μ_X

Binomial

$$E(X) = \sum_{i=1}^n x_i P(x_i) = \mu_X$$

Normal

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \mu_X$$

• Variance, Var(X) or σ_{x}^{2}

Binomial

$$\operatorname{Var}(X) = \sum_{i=1}^n (x_i - \mu_X)^2 P(x_i) = \sigma_X^2 \qquad \operatorname{Var}(X) = \int_{-\infty}^\infty (x - \mu_X)^2 f(x) \, dx = \sigma_X^2$$

Normal

$$\mathrm{Var}(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) \, dx = \sigma_X^2$$

Using these moments, we can make a probability distribution and model the population in some way More on this next week!

Key Takeaways + What's next?

- Sample statistics (e.g. mean, sd, etc.) and graphs/plots (e.g. histogram, bar graph) made from sample data are all estimates of the true population statistics
- How does this relate to probability distributions?
 - Remember probability distributions are used to model the population, so moments of a probability distribution (e.g. expected value) are therefore used to model moments/descriptives of the population (e.g. population mean)

• • • •

 Next week will cover more on how probability distributions are used to model the population, and how that is relevant in null hypothesis testing!

Recommendation: check out old tutorial resources (tutorial 5 worksheet) to get handson practice with these concepts