COGS2020

TUTORIAL 5: PROBABILITY AND RANDOM VARIABLES



Probability Key Terms

* Sample space - set of all possible outcomes
* Outcome - single result of an experiment
* Event - a set of outcomes (results) from an experiment

* Probability of an event - likelihood of an event,
0 = no likelihood, 1 =100% likelihood



Probability Basics

Assumptions/Axioms:

1. Non-negativity: P(A) =0

2. Normalisation: P(S) =1

3. Additivity: P(AUB) = P(A) + P(B) if Aand B are mutually exclusive

Therefore:

P(®)=0, probability of getting nothing, or an outcome outside of S, is 0
P(not A) =1 - P(A), probability of getting anything but A, is1-A

P(A and B) = P(A)*P(B)

P(A orB) =P(A) + P(B) - P(Aand B), accounts for the overlap of outcomes
between A and B (if any)



Axiom 1: Non-Negativity
The probability of any event A is always non-negative:
e P(A)=0

This means probabilities cannot be negative and every event has a
probability that is at least zero.



Axiom 2: Normalization

The probability of the entire sample space (S5) is always 1:
e P(S5)=1

This ensures that something must happen — the total probability
of all possible outcomesis 1.



Axiom 3: Additivity

If two events 4 and B are mutually exclusive (i.e., they cannot
occur together):

- P(AUB) = P(A) + P(B)

This states that the probability of either A or B happening is simply
the sum of their individual probabilities.

U = union, or



Probability of the Empty Set

The empty set @ contains no outcomes, so:
e P(@)=0

Example: The probability of flipping a coin getting neither “Heads”
nor “Tails” is O.



Complement Rule

* The probability of not A (denoted A°) is:
* P(A)=1-P(A)

* The chance that something does not happen is equal to 1 minus the chance
that it does happen.

Let’s say you flip a coin.
* The chance of getting Heads = P(Heads) = 0.5
* So the chance of not getting Heads (i.e., getting Tails) =

P(Not Heads)=1-0.5=0.5



Complement Rule

In Plain English:
* P(A) = The probability of event A happening.
* P(A°) = The probability of event A not happening.

* Since something either happens or it doesn’t, the two probabilities
mustadd up to 1.

There’s a 30% chance it will rain today.
e Sothe chance itwon’t rain is:
*1-0.3=0.7 (or70%)



Inclusion-Exclusion (Overlapping Events)

* If A and B are not mutually exclusive:
* P(AUB)=P(A) + P(B) - P(AnB)

P(AUB) = Probability that A or B happens (or both).

P(A) = Probability that A happens.

P(B) = Probability that B happens.

P(AnB) = Probability that both A and B happen at the same time.

Why Subtract P(AnB)?

* When we add P(A) + P(B), we double-count the part where A and B both

happen.
So, we subtract P(AnB) to fix that.



Inclusion-Exclusion (Overlapping Events)

P(AorB)=P(A) + P(B) - P(A and B)

. . Sample Likes Likes Probability
Example (Real'Llfe Style). space pizza (A) burgers (B)
. Lik [ v R N 0.3
Imagine we ask a group of people: O'ns,s pizza | [ ves | X No

* 40% like pizza>P(A)=0.3+0.1=0.4 Like burgers | & No Yes 0.2
« 30% like burgers > P(B)=0.2 +0.1=0.3 [°Y
* 10% like both » P(AnB) = 0.1 Likes both Yes Yes 0.1

Likes none X No )( No 0.4

So, what’s the chance someone likes pizza OR burgers (or both)?
* P(AUB)=0.4+0.3-0.1=0.6
* S0, there's a 60% chance a random person likes either pizza, burgers, or both.



Probability of Independent Events

* [ftwo events A and B are independent (one does not affect the other):
* P(AnB) = P(A) x P(B)

P(AnB) = The chance that both Aand B happen.
P(A) = The chance that A happens.
P(B) = The chance that B happens.

* Independent events = Knowing whether A happens tells you nothing
about whether B happens (and vice versa).

n = intersection, and



Probability of Independent Events

Imagine:
* You flip a coin: the chance of Heads is 0.5
* You roll a die: the chance of rollinga 4is 1/6

These are independent — the coin flip doesn’t affect the die roll.
So what’s the chance of getting Heads AND a 4?

* P(Heads and 4)= P(Heads) x P(4)=0.5x1/6=1/12
* So there’sa1in 12 chance both happen at the same time.



Random Variables (and how they’re related to
probability)

* Arandom variable is a “process” that generates random
outcomes

* Process is tied to a population and defined by a probability

distribution

 Outcomes are defined by a sample space (all potential outcomes) and
the probability of getting each outcome (visualised in a probability
distribution)

 Therefore, random variables and their “behaviour” can be
characterised by a probability distribution



Probability Distribution Functions

* Probability distribution functions describe the probability of obtaining
different values (of the sample space) from a random variable

* In other words, they are graphs that describe the behaviour of
probability distributions

* Note: You can get all the same info from the original probability
distribution graph, but it is easier to understand if we captureitina

different way

* All the functions on the next few slides can be made for each type of
probability distribution



Types of Distribution Functions
Probability Mass Function (PMF)

PMF for a fair six-sided die
* Probability Mass
Brobability of Function - for
t .
robadrtty o discrete random
each of the ) .
outcomes 2 variables, function
g that tells us the
. - probability/likelihood
Sometimes .
notated as of each (countable)
P(X=x) outcome

Big X =random
variable
Little x = actual
specific outcome

QOutcome

Sample space - all possible outcomes
Outcome sometimes notated as x (little x)
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Calculating probability in PMF

Probability Mass Function (PMF)

* Can count and add the probability of each singular outcome

Example:

PMF for a fair six-sided die

What is the probability of rolling a

0.00 1

number greater than 2. Orin
I I I I I I o

Outcome



Probability

Calculating probability in PMF

Probability Mass Function (PMF)

* Can count and add the probability of each singular outcome

Example: . . .
S What is the probability of rolling a
o fora fairsiesided die number greater than 2. Orin
016 different terms, P(X>2)?
1 1 1 1
PIX>2)==—+4+—-4+—-4+ =
0.101 ( ) 6 6 6 6
4 2
0.05 1 —_— 6 JR— 3

Outcome



Probability Mass Function

Fora discrete random variable, the probability mass
function (PMF) gives the probability of each outcome.

P(X=x) ="What’s the probability that the random variable
X equals some value x?"

A PMF tells you how likely each outcome is.

This one says that if you flip this particular biased coin,
there’s a 30% chance of heads and a 70% chance of

tails.

0.6

Probability

<
N}
N

<
~
L

P(X =2) =

0.3 if x = heads
0.7 if z = tails

PMF for a biased coin

0.01

Qutcome



Types of Distribution Functions
Probability Density Function (PDF)

PDF for heights in Australia d PrOba bility DenSity
Function - for
- continuous random
Probability of variables, function
eachofthe = .
outcomes 8§ that gives
: probability density
& of each
Sometimes ) (LI ncountable)
notated as f(x) outcome
f(x) representing L —
function of x ” Height (cm)

Sample space - all possible outcomes
Outcome sometimes notated as x (little x)



Calculating probability in PDF

Probability Density Function (PDF)

* Can NOT count and add the probability of each singular outcome
— need to calculate area under the curve

Example:
PDF for heights in Australia What is the pro bablllty that someone’s

height (from this population) will be
greater than 175cm, or in different terms
P(X>175)?

Probability density

Height (cm)



Calculating probability in PDF

Probability Density Function (PDF)

* Can NOT count and add the probability of each singular outcome
— need to calculate area under the curve

Example:

PDF for heights in Australia What is the probability that someone’s
height (from this population) will be
greater than 175cm, or in different terms
P(X>175)?

Unable to calculate by hand (without
fancy maths), but can calculate using R!

Probability density

Height (cm)



F(x)

Types of Distribution Functions

Cumulative Distribution Function (CDF)

e Cumulative
Distribution Function -
gives the cumulative
probability of getting
values less than or
equal to a specific
value

* Represents area under
the curve in a function

oiofe ! form
0.0 25 T.5 10.0 -2 2 4

Bernoulli CDF Binomial CDF Normal CDE

Fix)
F(x)




q{_Fx}

Types of Distribution Functions
Quantile Function (QF)

Bernoulli QF Binomial QF Normal QF * Qua I"ltil.e FLI nCtion -

gives the value that
corresponds to a

specified
? . probability/percentile
* Inverse of a CDF -
ﬂ gives X value instead
R E— e b of probability
F(x) F(x) F(x)



R functions used for probability calculations

Calculating probability of specific values:

* dbinom(x, n, p), PMF of binomial distribution

* dnorm(x, mean, sd, lower.tail = T/F), PDF of normal distribution *
Calculating probability of a range of values:

* pbinom(x, n, p, lower.tail = T/F), CDF of binomial dist, P(X < x) | P(X > x)
* pnorm(x, mean, sd, lower.tail = T/F), CDF of normal distribution
Calculating specific values that correspond to a probability/percentile:
* gbinom(qg, n, p, lower.tail = T/F)

* ghorm(q, mean, sd, lower.tail = T/F)

* Note that because we cannot count each and every single outcome of a norm dist, trying to isolate a
particular point on a PDF is not recommended. The probability of getting any single particular outcome in a
continuous random variable is so small, that itis practically 0. P(X=x)=0



Why do probability distributions matter in
statistics/research?

* Probability distributions are used to model the population in
some way, and tells us how data is expected to behave

* Moments are “descriptives” or characteristics of a probability
distribution —these moments are key characteristics that
define/determine the form of the distribution

* Moments (e.g. expected value, variance, etc.) can be used to
estimate outcomes, and run statistical/hypothesis tests...



Types of Moments/Descriptives

Note: these are the moments of
a random variable that form a
normal distribution.

* Expected Value, E(X) or py X~ N(uy, 0,2)

Binomial Normal

E(X):Za:@-P(mi):uX E(X)—/OO rf(x)dr = px

* Variance, Var(X) or oy?

Binomial Normal
n

Var(X) = 2:(5{:Z — ux)?*P(z;) = 0% Var(X) = /_00 (x — px)*f(x)de = o5

i—1 >

Using these moments, we can make a probability distribution and model the
population in some way .... More on this next week!



Key Takeaways + What’s next?

* Sample statistics (e.g. mean, sd, etc.) and graphs/plots (e.g.
histogram, bar graph) made from sample data are all estimates of the
true population statistics

* How does this relate to probability distributions?

* Remember - probability distributions are used to model the population, so
moments of a probability distribution (e.g. expected value) are therefore
used t)o model moments/descriptives of the population (e.g. population
mean

* Next week will cover more on how probability distributions are used to
moqlel;che population, and how that is relevant in null hypothesis
testing!

Recommendation: check out old tutorial resources (tutorial 5 worksheet) to get hands-
on practice with these concepts
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