Flip1 | X (Heads) | P(X) |
---|---|---|
H | 1 | 0.5 |
T | 0 | 0.5 |
2025
Flip1 | X (Heads) | P(X) |
---|---|---|
H | 1 | 0.5 |
T | 0 | 0.5 |
X | P(X) |
---|---|
0 | 0.5 |
1 | 0.5 |
Flip1 | Flip2 | X (Heads) | P(X) |
---|---|---|---|
H | H | 2 | 0.25 |
H | T | 1 | 0.25 |
T | H | 1 | 0.25 |
T | T | 0 | 0.25 |
X | P(X) |
---|---|
0 | 0.25 |
1 | 0.50 |
2 | 0.25 |
Flip1 | Flip2 | Flip3 | X (Heads) | P(X) |
---|---|---|---|---|
H | H | H | 3 | 0.125 |
H | H | T | 2 | 0.125 |
H | T | H | 2 | 0.125 |
H | T | T | 1 | 0.125 |
T | H | H | 2 | 0.125 |
T | H | T | 1 | 0.125 |
T | T | H | 1 | 0.125 |
T | T | T | 0 | 0.125 |
X | P(X) |
---|---|
0 | 0.125 |
1 | 0.375 |
2 | 0.375 |
3 | 0.125 |
Flip1 | Flip2 | Flip3 | Flip4 | X (Heads) | P(X) |
---|---|---|---|---|---|
H | H | H | H | 4 | 0.0625 |
H | H | H | T | 3 | 0.0625 |
H | H | T | H | 3 | 0.0625 |
… | … | … | … | … | … |
H | T | T | T | 1 | 0.0625 |
T | T | T | T | 0 | 0.0625 |
X | P(X) |
---|---|
0 | 0.0625 |
1 | 0.25 |
2 | 0.375 |
3 | 0.25 |
4 | 0.0625 |
Flip1 | Flip2 | Flip3 | Flip4 | Flip5 | X (Heads) | P(X) |
---|---|---|---|---|---|---|
(32 combinations omitted for brevity) |
X | P(X) |
---|---|
0 | 0.03125 |
1 | 0.15625 |
2 | 0.31250 |
3 | 0.31250 |
4 | 0.15625 |
5 | 0.03125 |
Flip1 | Flip2 | … | Flip100 | X (Heads) | P(X) |
---|---|---|---|---|---|
(2^100 combinations omitted for obvious reasons) |
X | P(X) |
---|---|
0 to 100 | Approximates a normal distribution centered at 50 |
We defined \(X\) as the sum of heads in a sequence of fair coin flips.
For small numbers of flips (e.g., 1–3), the distribution of \(X\) was clearly discrete and not very bell-shaped.
As the number of flips increased, the distribution of \(X\) became increasingly bell-shaped and looked increasingly continuous.
This gradual emergence of a bell shape — even though individual outcomes are binary — is a demonstration of the Central Limit Theorem.