This slide deck gives a few examples of how you can approach reporting the results of a regression.
But remember to always check journal guidelines for specific requirements.
2025
This slide deck gives a few examples of how you can approach reporting the results of a regression.
But remember to always check journal guidelines for specific requirements.
## ## Call: ## lm(formula = Y ~ X, data = d) ## ## Residuals: ## Min 1Q Median 3Q Max ## -8.042 -2.528 -1.076 3.466 10.059 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 4.21098 4.00823 1.051 0.302 ## X 0.43298 0.07943 5.451 8.1e-06 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 4.197 on 28 degrees of freedom ## Multiple R-squared: 0.5148, Adjusted R-squared: 0.4975 ## F-statistic: 29.71 on 1 and 28 DF, p-value: 8.099e-06
A simple linear regression was conducted to predict Y from X. The model was significant, \(F(1, 28) = 29.71\), \(p < .001\), and explained approximately 51 % of the variance in Y (\(R^2 = 0.51\)). X was a significant predictor of Y (\(\beta = 0.43\), \(p < .001\)).”
## ## Call: ## lm(formula = Y ~ X1 + X2, data = d) ## ## Residuals: ## Min 1Q Median 3Q Max ## -7.7968 -2.2966 -0.8143 2.0634 10.5008 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -22.45098 8.81960 -2.546 0.016932 * ## X1 0.45888 0.07923 5.792 3.67e-06 *** ## X2 0.91491 0.21752 4.206 0.000256 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 4.75 on 27 degrees of freedom ## Multiple R-squared: 0.6033, Adjusted R-squared: 0.5739 ## F-statistic: 20.53 on 2 and 27 DF, p-value: 3.8e-06